Name:	
Student ID:	
Section:	
Instructor:	

Math 113 (Calculus II) Midterm Exam 1

January 29–February 2, 2010

Instructions:

- Work on scratch paper will not be graded.
- For questions 6 to 11, show **all** your work in the space provided. Full credit will be given only if the necessary work is shown justifying your answer. Please write neatly.
- Should you have need for more space than is allotted to answer a question, use the back of the page the problem is on and indicate this fact.
- Simplify your answers. Expressions such as $\ln(1)$, e^0 , $\sin(\pi/2)$, etc. must be simplified for full credit.
- Calculators are not allowed.

For Instructor	use	only.
----------------	-----	-------

#	Possible	Earned	#	Possible	Earned
MC	15		9c	5	
6a	15		9d	5	
6d	10		9e	5	
7	5		9f	5	
8	10		10	5	
9a	5		11a	5	
9b	5		11b	5	
Sub	65		Sub	35	
			Total	100	

Multiple Choice. Fill in the answer to each problem on your computer-scored answer sheet. Make sure your name, section and instructor are on that sheet.

- 1. Find the volume of the solid obtained by rotating the region bounded by the curves $y = \sec(x)$, $y = 0, x = 0, x = \frac{\pi}{4}$ about the x-axis.
 - a) 1 b) 2
 - c) 3 d) π
 - e) $\frac{\pi}{2}$ f) $\frac{\pi}{3}$
 - g) None of the above
- 2. Find the average value of the function $f(x) = \sqrt[3]{x}$ on the interval [1, 8].
 - a) 12 b) $\frac{12}{7}$ c) $\frac{45}{4}$ d) $\frac{3}{2}$
 - e) $\frac{3}{14}$ f) $\frac{45}{28}$
 - g) None of the above

3. If f(1) = 2, f(4) = 7, f'(1) = 5, f'(4) = 3, and f''(x) is continuous, what is $\int_{1}^{4} x f''(x) dx$?

- a) 9 b) -2
- c) 12 d) -1
- e) 2 f) None of the above.

4. What is
$$\int_{0}^{\frac{\pi}{4}} \sin^{2}(2\theta) d\theta$$
?
a) 1 b) 0
c) $\frac{1}{2}$ d) $\frac{\pi}{8}$
e) $\frac{\pi - 2}{8}$ f) None of the above

5. What is the best form for the partial fraction decomposition of $\frac{2x+1}{(x+1)^3(x^2+4)^2}$?

a)
$$\frac{A}{(x+1)^3} + \frac{Bx+C}{(x^2+4)^2}$$

b) $\frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{(x+1)^3} + \frac{Dx+E}{x^2+4} + \frac{Fx+G}{(x^2+4)^2}$
c) $\frac{A}{x+1} + \frac{B}{(x+1)^3} + \frac{Cx+D}{x^2+4}$
d) $\frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{(x+1)^3} + \frac{D}{x^2+4} + \frac{E}{(x^2+4)^2}$

e)
$$\frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{(x+1)^3} + \frac{Dx+E}{x^2+4} + \frac{Fx+G}{(x+1)^3(x^2+4)^2}$$

f) None of the above

Free response: Write your solution and answer in the space provided. Answers not placed in this space will be ignored.

- 6. Consider the region between the curves y = 5x and $y = x^2$ in the first quadrant.
 - (a) (15 points) Set up an integral for the area of the region bounded by the curves. DO NOT EVALUATE.
 - (b) Set up an integral for the volume obtained when the region is rotated about the x-axis. DO NOT EVALUATE.
 - (c) Set up an integral for the volume obtained when the region is rotated about the y-axis. DO NOT EVALUATE.
 - (d) (10 points) Set up an integral for the volume obtained when the region is rotated about the line y = -2. DO NOT EVALUATE.
 - (e) Set up an integral for the volume obtained when the region is rotated about the line x = -3. DO NOT EVALUATE.

7. (5 points) A 12-ft chain weighs 36 lbs and hangs over the edge of a 20 ft high building. How much work is done in pulling the chain to the top of the building?

8. (10 points) The base of a solid is a circular disk with radius 3. Find the volume of the solid if parallel cross-sections perpendicular to the base are isosceles right triangles with one of the two equal sides lying along the base.

9. Integrate the following and show all of your work:

(a) (5 points) $\int \sin^6 x \cos^3 x \, dx$

(b) (5 points)
$$\int t^5 \ln t \, dt$$

(c) (5 points)
$$\int \frac{\ln(\ln x)}{x \ln x} dx$$

(d) (5 points) $\int x \sin 7x \, dx$

(e) (5 points)
$$\int x^3 \sqrt{x^2 + 1} \, dx$$

(f) (5 points)
$$\int e^{2\theta} \cos 4\theta \, d\theta$$

10. (5 points) A force of 12 lb is required to hold a spring stretched 3 in. beyond its natural length. How much work is done in stretching it from its natural length to 4 in. beyond its natural length?

11. Integrate the following:

(a) (5 points)
$$\int x\sqrt{1-x^4} \, dx$$

(b) (5 points)
$$\int_{2}^{3} \frac{2x+3}{(x-1)(x+4)} dx$$